+- +-

+-User

Welcome, Guest.
Please login or register.
 
 
 
Forgot your password?

+-Stats ezBlock

Members
Total Members: 43
Latest: Heredia05
New This Month: 0
New This Week: 0
New Today: 0
Stats
Total Posts: 10908
Total Topics: 246
Most Online Today: 4
Most Online Ever: 52
(November 29, 2017, 04:04:44 am)
Users Online
Members: 0
Guests: 0
Total: 0

Post reply

Warning - while you were reading 12 new replies have been posted. You may wish to review your post.
Name:
Email:
Subject:
Message icon:

Attach:
Help (Clear Attachment)
(more attachments)
Allowed file types: doc, gif, jpg, jpeg, mpg, pdf, png, txt, zip, rar, csv, xls, xlsx, docx, xlsm, psd, cpp
Restrictions: 4 per post, maximum total size 1024KB, maximum individual size 512KB
Verification:

shortcuts: hit alt+s to submit/post or alt+p to preview


Topic Summary

Posted by: AGelbert
« on: November 09, 2018, 02:55:45 pm »

What Is A Solid-State Battery and Will They Solve Our Battery Life Problems?

MICHAEL CRIDER  @michaelcrider

NOVEMBER 9, 2018, 6:40AM EDT

SNIPPET:

Solid-state batteries promise a few distinct advantages over their liquid-filled cousins: better battery life, faster charging times, and a safer experience.

Solid-state batteries compress the anode, cathode, and electrolyte into three flat layers instead of suspending the electrodes in a liquid electrolyte. That means you can make them smaller—or at least, flatter—while holding as much energy as a larger liquid-based battery. So, if you replaced the lithium-ion or lithium-polymer battery in your phone or laptop with a solid-state battery the same size, it would get a much longer charge. Alternatively, you can make a device that holds the same charge much smaller or thinner.

Solid-state batteries are also safer, since there’s no toxic, flammable liquid to spill, and they don’t output as much heat as conventional rechargeable batteries. When applied to batteries that power current electronics or even electric cars, they might recharge much faster, too—ions could move much more quickly from the cathode to the anode.

According to the latest research, a solid-state battery could outperform conventional rechargeable batteries by 500% or more in terms of capacity, and charge ⚡ up in a tenth of the time. 👍

Read more:

https://www.howtogeek.com/393503/what-is-a-solid-state-battery-and-will-they-solve-our-battery-life-problems/
Posted by: AGelbert
« on: October 18, 2018, 02:03:09 pm »


Tabuchi Eco Intelligent Battery System (EIBS) 💫


Learn more:

https://www.tabuchiamerica.com/residential


Posted by: AGelbert
« on: October 01, 2018, 06:32:16 pm »

September 30th, 2018 by Zachary Shahan


Quote
Batteries for electric cars and other light-duty electric vehicles grew from an output of 1 GWh in 2011 to an output of 37 GWh in 2017. Furthermore, batteries for electric buses hit another 26 GWh in 2017. 😎



Read More;

Posted by: AGelbert
« on: September 24, 2018, 01:25:02 pm »

Michigan utility unveils new battery at university

Sep. 22, 2018

KALAMAZOO, Mich. (AP) — A Michigan utility has unveiled a new battery to store renewable energy at Western Michigan University.

The battery can store enough solar and wind energy to supply about 1,000 homes with an hour of power  , said Consumers Energy Project Manager Nathan Washburn. The battery will be used to keep energy output stable even when there’s cloud coverage, he said.

“This battery is a big step forward for Consumers,”  Washburn said.

Consumers Energy partnered with the university in 2016 to create an 8.5-acre solar power plant. The new battery will store power from the plant and provide energy to residents in the region, said Tim Sparks, vice president of electric grid integration for Consumers Energy.

“In the future we do believe that these will be one of the main sources of electricity for our toolbox,” Sparks said.   

The company and Michigan State University consultants will study the facility to determine how battery storage could be used around Michigan. Western Michigan University will also be able to work with the utility on electric battery research and operations.

“With the solar array and now the first battery, we have this rare combination to both generate solar power and then think about how to store it and use it for consumers,” WMU President Edward Montgomery said. “For meeting peak-load demands, meeting those times during cloudy days. How do you solve those problems? And we can be at the forefront of that.”

U.S. Rep. Fred Upton said more than 40 percent of the state’s electricity will be from renewable energy sources by 2040. 👍

“To do that you have to have battery storage for when the wind doesn’t blow and the sun doesn’t shine,” he said.

https://apnews.com/d2f16d41654748d98522b6c2701c7495/Michigan-utility-unveils-new-battery-at-university

Posted by: AGelbert
« on: August 31, 2018, 05:52:22 pm »

CleanTechnica
Support CleanTechnica’s work via donations on Patreon or PayPal!

Or just go buy a cool t-shirt, cup, baby outfit, bag, or hoodie.


Tesla “Big Battery” Responds To “Power System Emergency” In Australia 

August 29th, 2018 by Steve Hanley

Last Saturday afternoon, lighting strikes in Australia temporarily interrupted transmission lines that interconnect the electrical grids in the eastern part of the country. For a time, the grids in Queensland and South Australia were turned into energy islands, cut off from the national grid infrastructure. The Australian Energy Market Operator termed the incident a “power system emergency.”

Tesla big battery in South Australia

Customers in New South Wales and Victoria experienced widespread power outages while those in in Queensland and South Australia noticed little more than a momentary flicker of their lights. In Queensland, that happy circumstance was due to an abundance of renewable energy available to meet that state’s energy needs. Some of the excess was being shared with NSW before the transmission line between the two was put out of commission.

South Australia was largely unaffected, thanks to the Hornsdale Power Reserve, known affectionately in SA as the “Tesla Big Battery.” It kicked in immediately to add 84 MW of power to the state’s electrical grid and stabilize the frequency of the local grid, which was disturbed when the link to neighboring Victoria was disrupted.

The success of the “Big Battery” was a silent rebuke to new Australian Prime Minister Scott Morrison, a Donald Trump wannabe who channeled US senator James Inhofe when he brought a lump of coal onto the floor of parliament earlier this year to demonstrate his love of coal. In July, Morrison uttered these sage words to demonstrate his vast storehouse of knowledge about energy policies:

“I mean, honestly, by all means have the world’s biggest battery, have the world’s biggest banana, have the world’s biggest prawn like we have on the roadside around the country, but that is not solving the problem.” The Big Banana is an amusement park located in Coffs Harbor in northern NSW.


Big Banana NSW

Last year, Morrison went out of his way to mock the Tesla battery installation in South Australia. “I don’t care if it’s wind, coal, the world’s biggest battery, but you’ve got to measure it on its contribution, and it doesn’t measure up to a big solution. 30,000 SA households could not get through watching one episode of Australia’s Ninja Warrior with this big battery. So let’s not pretend it is a solution.”

As RenewEconomy so cogently points out, “The Tesla big battery, also known as the Hornsdale Power Reserve, was able to play a key role in helping keep the grid stable and the lights on in South Australia on Saturday, in its biggest threat since the 2016 blackout. It did solve a problem. Morrison’s Big Banana, on the other hand, wasn’t able to lift a finger to help customers in NSW. Such a shame they didn’t have a battery to help them.” It also noted that people in SA were able to watch their tellies uninterrupted by the crisis.

The outage occurred on the first day of Morrison’s term in office after ousting Malcolm Turnbull last week. Compounding the ignorance of his administration, Matt Canavan, the country’s new resources minister, told The Australian after the event, “The system has heightened vulnerability because of the reliance on interstate and unreliable power. More investment in coal, gas or hydro would firm up the system, create more supply and bring down prices.”

That’s a lie. When the interstate transmission lines went down, NSW was forced to shed 724 MW of load and Victoria 280 MW. In South Australia, no load was shed. None. As in, not any. AEMO said after the event the outages had nothing to do with any loss of generation. In fact, no generator — whether coal, gas, wind or solar — tripped off as a result of the transmission failure. So, sorry, Matt Canavan — no amount of extra generating capability would have helped the situation.

Morrison has appointed Angus Taylor, a fierce critic of renewable energy policies, as his new energy minister, leading the Australian Clean Energy Council to declare that is is now up to the individual states to move the renewable energy revolution forward with no expectation of assistance from the federal government, according to a report by Energy Matters.

If you think it is merely a coincidence that Australia and the US are both now hostages to fossil fuel advocates 🐉🦕🦖 , you are simply not paying attention.
Despite some recent efforts to greenwash themselves, the fossil fuel interests are busy committing crimes against humanity in the background while they continue to stuff their pockets with oil-soaked cash and coal-polished coins, and then use some of that money to buy influence at the highest levels.

https://cleantechnica.com/2018/08/29/tesla-big-battery-responds-to-power-system-emergency-in-australia/

Posted by: AGelbert
« on: August 20, 2018, 04:54:48 pm »

INSIDEEVs

The Truth About Tesla Model 3 Batteries: Part 2

Published on Aug 18, 2018  89,024 views  :o ;D


Two Bit da Vinci

Go HERE to view Part 1.  8)
Posted by: AGelbert
« on: August 12, 2018, 03:47:45 pm »

CleanTechnica
Support CleanTechnica’s work via donations on Patreon or PayPal!

Or just go buy a cool t-shirt, cup, baby outfit, bag, or hoodie.

Volt meter image by Thomas Kelley on Unsplash; container storage image from company

How to Understand Battery Life

August 12th, 2018 by Sponsored Content

The idea that batteries have a ‘life’ is familiar. We’ve all experienced a ‘dying’ cell phone battery with its charge draining, usually at the most inconvenient time. And you might be curious about how this affects long-duration energy storage. To fully understand battery life, let’s start with a few fundamentals.

How to Understand Battery Life

Battery Fundamentals

A battery stores energy in chemical form, then converts it into electrical energy. Battery ‘life’ refers to three characteristics: performance, longevity, and capacity.

Let’s explain the semantics of these words a bit further:

Performance life is the run time of a battery on full charge.

Longevity refers to the number of charge cycles a battery can take before it no longer charges.

Capacity means that a new battery will charge up to 100% but an older battery will charge possibly up to 70%. For example, the Tesla Powerwall has a warranty of ten years at 70% capacity. Tesla recognizes that the battery will lose 30% or more in capacity over time. High DoD also affects capacity negatively.

Rechargeable batteries have a finite life. Every time you charge your phone, for example, small (and detrimental) changes occur to the battery’s electrodes. Eventually, these changes will kill the battery, preventing it from being able to charge or store energy.

Why ‘Depth of Discharge’ Affects Battery Life

The number of times you charge a battery affects its lifespan, but so does the depth of discharge (DoD) – how much energy of the total battery capacity is drawn off at a time.

You may have received instructions about your cell phone telling you to recharge the battery before it completely ‘dies.’ That’s because a 100% depth of discharge puts stress on a battery and shortens its lifespan. Think of it like driving an older car and letting the engine oil run out. You may be able to drive for several hundred (or thousand) miles, but eventually, the engine will stop working. A battery responds similarly. Consistently drawing a high level of energy per use disrupts the interior of the battery and affects performance.

When purchasing rechargeable batteries, especially those for solar power storage, the depth of discharge becomes an essential qualifier of performance. You may see battery labeling showing a range of lifecycle options such as 25,000 cycles at 30% DoD or 1,000 cycles at 75% DoD.

Cost Implications of Depth of Discharge for Solar Storage

When you shift to stored solar power for your home or business, you’ll likely want the option of a deeper discharge. Why? Because you’ll need access to as much stored energy as possible to keep lights, appliances, and other devices fully functioning. But remember, drawing down the battery deeply in the short run will reduce the number of cycles the battery operate effectively.

The result is a higher cost per kWh over the shortened lifespan of the battery. For example:

Let’s say your 10-kWh lithium-ion battery costs $6,000 and promises 1,000 cycles at 80% DoD. That means you’ll have 8,000 kWh across its life (10 kWh x 1,000 cycles x .8 ), and you’ll pay $0.75 per kWh ($6,000 / 8,000).
If you run the same battery at 20% DoD, you may see 10,000 cycles or 20,000 kWh across its life – and only pay $0.30 per kWh. Unfortunately, you may not be able to power all your appliances or lights when you need them.


The Vanadium Advantage

Vanadium flow batteries and battery life are different than traditional lithium-ion batteries. A vanadium battery uses a liquid, non-flammable electrolyte solution to store energy, enabling it to deliver at 100% depth of discharge without degrading capacity over time. This means a StorEn* vanadium battery provides the full power you need for thousands of cycles and many years – keeping the cost per kWh for solar storage lower than other options. Furthermore, the electrolyte is 100% reusable in a new battery, which means there is no need to mine new vanadium.

You can find out more about StorEn’s products and invest in their reliable, cost-effective technology by visiting their investment campaign.

*Full disclosure: This post is supported by StorEn Technologies. CleanTechnica does not provide investment advice of any kind. Please consult an investment professional or use your own independent judgement on investment matters.

https://cleantechnica.com/2018/08/12/how-to-understand-battery-life/

Quote
Shiggity

A big difference that I've found is cells vs. pouches.

Pouches suck. They're structurally weak, prone to thermal runaway, and are harder to control at a fine software level.

Flow batteries will be great in places that need massive energy dumps and influxes, like smelting aluminum and steel. Or sitting on a large distribution center. Flow batteries are annoying because they are super heavy and big, you typically need a large crane to get them installed, which is spendy.
Posted by: AGelbert
« on: August 09, 2018, 02:38:52 pm »

INSIDEEVs

August 9, 2018

Everything You Ever Wanted To Know About Tesla Batteries 🕵️


You have questions, Two Bit da Vinci has answers.  ;D

One of the main reasons Tesla is where it is today is because of batteries. They attacked the problem of electric vehicle range — the traditional weak point of EVs — by choosing the most energy-dense cell available and then developed the battery pack to suit its needs. The result was a more than 200 miles of range and all the power needed to not only turn heads, but to turn an entire industry on its ear.

Read more:

https://insideevs.com/everything-about-tesla-batteries-video/

Posted by: AGelbert
« on: June 27, 2018, 08:33:16 pm »

World’s First Battery For Offshore Wind Completed At Floating Offshore Wind Farm

June 27th, 2018 by Joshua S Hill

Norwegian energy company Equinor announced this week that it has completed the installation of the world’s first battery for an offshore wind farm at its 30 megawatt (MW) Hywind Scotland floating offshore wind farm, which is the world’s first floating wind farm.

Hywind Scotland - World's First Floating Wind FarmFirst approved by the Scottish Government back in late 2015, Hywind Scotland began generating electricity in October of last year and, in February, Equinor (then known as Statoil) revealed that not only has the project been a success, but that the project is outperforming expectations and generating electricity at levels consistently above that of its seabound offshore cousins, wind turbines that are built into the seafloor.

Even before Hywind was completed and operational, however, the two companies behind the project — Statoil/Equinor and Masdar — conceived of plans to add a battery storage option to the project, which would be the first time a battery storage project has been attached to an offshore wind energy project. The project was given the go-ahead, and earlier this year the two companies announced they would use the project, known as Batwind, to further study the potential of integrating battery systems with wind and solar.

Announced on Wednesday, Equinor revealed that Batwind has been completed and the 1 MW battery provided by Younicos, and located at an onshore substation, will now be able to dynamically balance power from the offshore wind farm.

#Batwind, which stores energy ⚡ from the floating wind farm #Hywind, was opened in Peterhead, Scotland today.

— Equinor (@Equinor) June 27, 2018

“The variability of renewable energy can to a certain extent be managed by the grid,” said Sebastian Bringsvaerd, Development Manager for Hywind and Batwind. “But to make renewable energy more competitive and integrate even more renewables to the grid, we will need to find new, smart solutions for energy storage to provide firm power. How to do this in a smart and value creating way is what we are aiming to learn from Batwind.”

“We’re very proud to partner with Equinor and provide our expertise from over 200 megawatts of storage projects to this pioneering project,” added Karim Wazni, Managing Director of Younicos. “By adding energy storage capabilities to another world “first” – the world’s first floating wind farm – we hope to demonstrate the essential role that storage plays as we continue pushing the frontier in producing sustainable energy. Specifically, we’ve equipped Batwind with our intelligent Y.Q software, which ensures that the battery ’learns’ the optimal storage conditions. Our software tells the battery when to store electricity and for how long, and when and how much to inject back onto the grid.”

https://cleantechnica.com/2018/06/27/worlds-first-battery-for-offshore-wind-completed-at-floating-offshore-wind-farm/
Posted by: AGelbert
« on: June 20, 2018, 06:57:14 pm »

ENERGY STORAGE

Residential Batteries Almost Beat Out Utility-Scale Deployments Last Quarter

Home energy storage projects rivaled utility-scale deployments for the first time, according to GTM Research’s latest Energy Storage Monitor.

JULIAN SPECTOR JUNE 06, 2018

Residential storage has been growing in popularity and prominence.

The historically tiny residential energy storage segment won big in Q1 2018, according to the latest deployment data.

Utility-scale projects, the usual workhorse of the energy storage industry, dropped massively compared to last year’s Q1, when the Aliso Canyon procurements came online and set a record for energy capacity. What saved the quarter from historically low performance turned out to be the aggregate growth of all the little systems popping up in customers' homes.

"Residential storage has been growing in popularity and prominence," said Brett Simon, senior analyst at GTM Research. "It’s getting cheaper. Folks are more aware of it and are asking for it. Solar installers are doubling down on it as a new business model." 

Residential deployments beat commercial deployments, 15.9 megawatts to 11.7 megawatts, according to the latest Energy Storage Monitor from GTM Research and the Energy Storage Association. Even more impressively, home batteries rivaled utility-scale deployments, which only clocked in at 16 megawatts.

That’s an unprecedented and jolting development that is worth emphasizing.

Ever since GTM Research began tracking storage deployments in 2013, residential batteries appeared as the faintest of slivers on the industrywide bar graph, nonzero but totally insubstantial.

Now, for the first time, the smattering of a few kilowatts here and there has nearly overtaken the giants of grid-scale mega-projects. That's a result both of the mega-projects not showing up this quarter and the micro-projects swarming into action.

The historically tiny residential energy storage segment won big in Q1 2018, according to the latest deployment data.

Utility-scale projects, the usual workhorse of the energy storage industry, dropped massively compared to last year’s Q1, when the Aliso Canyon procurements came online and set a record for energy capacity. What saved the quarter from historically low performance turned out to be the aggregate growth of all the little systems popping up in customers' homes.

"Residential storage has been growing in popularity and prominence," said Brett Simon, senior analyst at GTM Research. "It’s getting cheaper. Folks are more aware of it and are asking for it. Solar installers are doubling down on it as a new business model."

Dialing into the numbers, it’s clear that California and Hawaii drove this newfound strength with state-level growth that merits no less than the technical designation: "bonkers."

California’s resi sector rose 3,833 percent year-over-year in terms of megawatts, 4,324 percent in terms of megawatt-hours. The fact that energy capacity grew more reflects that these systems are sizing up to hold more duration.


Those two states accounted for 74 percent of the home systems deployed.

Notably, there wasn't any extreme, one-off event driving the surge in residential deployments in the way that the Aliso Canyon procurements did for big projects a year ago. That means that the forces that produced this quarter's outcome — transitions away from solar net metering, new business models with low upfront costs, newfound interest in resilience — will likely continue through the year.

In fact, the first two quarters of storage installations tend to be smaller than the last two, based on how the industry has operated historically. Such a large opening quarter hints at an even bigger second half.

"The residential market this year is going to be over five times the size of the market last year, in megawatt terms," Simon said.

The future looks even brighter, thanks to the California Energy Commission’s newly passed solar PV mandate for new homes starting in 2020. GTM Research calculates that this policy will cause a 26 percent upside in its base-case residential storage projection for 2020 onward.

Bigger doesn't always mean better

Meanwhile, the utterly California-dominated commercial sector continued its zig-zaggy volatility, dropping 53 percent from its record high last quarter. California giveth and California taketh away.

The nature of utility-scale construction lends itself to even more lumpiness in its quarterly swings.

Last quarter, only five projects hit the wires. That said, they managed to deliver the third-highest energy capacity of any quarter, because each new project delivered 4-hour duration.

The only two quarters with more energy deployed included the Aliso Canyon rollout, when Southern California delivered a massive, fast-tracked procurement to deal with a regional gas constraint.

Though quarterly deployments dropped compared to last year, the pipeline for front-of-the-meter storage increased 76 percent in a year, from 9,217 megawatts to 16,196 megawatts.

Overall, the industry is on track to deliver 557 megawatts this year, and GTM expects the annual deployments will hit 3,688 megawatts in 2023, the final year of its projection. That’s up 12 percent or 909 megawatts from the projection last quarter, due to promising developments since that time.

Miscellaneous signs o’ the times:

California has officially pulled ahead of PJM as the largest cumulative storage market. This actually happened before the last quarterly report, but hasn’t gotten a ton of play. PJM kicked off the utility-scale storage industry, but its frequency regulation market has essentially stopped growing. Thus, the baton has passed to California, where a much wider menu of services and market products promise more robust long-term growth. (In the apples-to-apples comparison of just utility-scale, PJM still leads by 100 megawatts.)

All of the utility-scale projects in Q1 had 4-hour duration. So long frequency reg, with your short-duration systems.
Front-of-the-meter battery deployments happened in Florida and Arizona. Texas and California, which led the previous quarter, didn't show up this time.

In the weeds but indicative of a broader trend, the researchers added two new states to the roster that they track quarterly: Colorado and Nevada. Both had promising new policy developments and utility activities to presage a more active storage market in the years ahead.
***

Download the free executive summary of the U.S. Energy Storage Monitor here.

https://www.greentechmedia.com/articles/read/residential-batteries-almost-beat-utility-scale-deployments-last-quarter#gs.tn6l9EE

Posted by: AGelbert
« on: June 20, 2018, 05:55:29 pm »

I can't ever see running any device straight off the panels without a batt system of some sort to have a power buffer while working.  What if the clouds come out right when you are in the middle of ripping some plywood?  One old 12V Car Batt in decent shape will do for a buffer in most cases I would say, however brand spanking new a deep cycle marine batt isn't that expensive.  I just bought a new one for the old Bugout Machine at Batteries & Bulbs for $90.  Duracell, good brand.

In terms of power to do your chores, as I mentioned my 1000W 36V DC motors would turn just about anything including a concrete saw.  You can get bigger than that though if you want to run a **** sawmill or something.  I looked at buying this 5000W motor to soup up my Ewz and make it into a towing powerhouse and/or Cripple Racing Machine.  You can get different models operating at 48V, 72V or 96V.



RE

Yup. That is the scale we are talking about. Mini, Micro scale sawmill. Something like a band saw. Enough to buck up coppice wood... or run a wheat grinder. If the job gets called by cloud... it's done. Do do something else. C5 rule of survival. If all else fails, lower your expectations.

I do seem to recall, back in the old days, there were DC motors long before we switched to AC. I am guessing there are some sitting in some old barns as antiques. But it is like searching for the secrets of the pyramids or the arc of the covenant.

I know its there. I hope it is there. It just takes some Gandolf to step in and say, "Ya the P37 R2D2 jack motor. My granddad used to pump the well with it". I'm looking for "the holy grail"

I have found the best source for variable dc motors to be treadmills. I have a few of them in my pile of interesting things. They would work on any panel from 12 volt to 100 volts combined voltage. They would work for pumps, bandsaws etc. For shits and giggles take a look at this guy. https://www.youtube.com/watch?v=C7gp3XjsH64
He makes homemade 12 volt batteries. a rack of these would act as the passthrough battery i mentioned above. my point is just that we always talk about the batteries but from a construction point of view they are the simplest component to recreate in a scaled down world. Much easier then a motor.

Posted by: AGelbert
« on: June 20, 2018, 05:49:18 pm »

I have been meaning to get back to this.... but I have been behind the ball lately. I stick with my CORDED power tools for resilience, position....

But since we clearly have some Electrical guys here...and me being a luddite, I see an opportunity.

I have a decent solar system... but that only lasts until the batteries die. Some people have solar that feeds into the grid. No grid, no batteries, done.

But here is a question I have to reach out to electrical guys for.

Can someone tell me about a practical DC motor that I can get some work out of by directly  tying it into the solar panels. Only works when sun is available.

Give me your thoughts guys. Can it be turned into, say, a wood saw.... or.... something that turns a reworked  generator for sunny day, power tool use.

That should give you folks something to chat about or share your knowledge of where to look for someone doing similar.

There is no easy way to run directly off the solar panels being marketed today at insanely cheap prices. the charge controllers that are charging batteries today are using panel strings of 70-200 volts and converting it down to 12-48 and are referred to as MPPT chargers. They absolutely need a battery to feed to or they won't feed out. The older charge controllers that were just a complicated switch were operating panels that matched the voltage of the battery banks and are called PWM controllers. those ones will sometimes feed out without a battery but its iffy. As RE mentioned it would technically be possible to run a 36 volt motor off of the 60 cell 200-300 watt panels. They output in full sun at about 32-40 volts at 6-8 amps. It would be tricky though. Say you wanted to run a table saw you would want to re jig it to incorporate a flywheel of some sort or have 2 or 3 panels hooked up in parallel to have 2 or 3 times the amps of the motor to draw from in case the sun goes away or you bog down. To me that is a waste of resources since if batteries are toast panels which are way more complicated will fetch a premium and weird voltage dc motors would be almost non existent. BUT... Even an almost dead battery bank as long as the cells have not shorted out can be the buffer you need to run the controllers and act as a pass through for the power from the panels. The trick would be to start treating your batteries as irreplaceable. In times of crisis think of them as delicate senior citizens. You eliminate all the shocks we inflict on them daily. In that scenario you wait for the sun to be out and charging at more then what you need and start turning on devices to match the sun; freezer/fridge conversion, well pump with an insanely large pressure tank, maybe some electric chainsaw work etc. All of these are usually inverter functions. You aim to use almost all the solar in passthrough and DO things with it and dribble a little to your geriatric batteries to keep them charged and as alive as they can be. When the sun goes away you power down all the ac, turn off the inverter and coast on a few dc led lights. You've stored the energy as cold, pressurized water and sawn wood instead of chemical potential energy. In that kind of scenario the 2000 cycle battery bank can be pushed into the 8000 cycles realm and if we have not figured out something different within 20 years we are already dead anyways since that is the lifespan of the inverters charge controllers etc,,, Its more complicated then that and would require beer a sketch pad, a pencil and me waving my hands a lot but that is the jist of it. Its easy enough to experiment with if you want; find a poor old battery bank from a recycler at the same voltage as your existing one and switch over to model a battery of much diminished capabilities and practice using power directly.I know a nice old lady in the woods who lasted 14 years on her original undersized batteries with very minor lifestyle hacks let alone the hard core alterations proposed above. Food for thought. Back to work...
Cheers,  David

Posted by: AGelbert
« on: June 14, 2018, 09:34:20 pm »



Regulators Approve Five Grid-Scale Lithium-Ion Battery Projects 💫 for Southern California

June 8, 2018

By Renewable Energy World Editors

         
Regulators in California gave San Diego Gas & Electric (SDG&E) approval to move forward with development of five grid-scale lithium-ion battery projects in San Diego and Orange counties.

The five projects will deliver a total of 83.5 MW/334 MWh to SDG&E’s energy storage portfolio. SDG&E submitted the projects to the California Public Utilities Commission (PUC) in April 2017.

According to SDG&E, the projects include:

֍ A 30-MW/120-MWh lithium-ion battery storage facility in San Diego, Calif., that will be built by Renewable Energy Systems (RES) America and will be completed by December 2019

֍ A 4-MW/16-MWh lithium-ion battery storage facility in San Juan Capistrano, Calif, that will be built by Advanced Microgrid Solutions and will be completed by December 2019

֍ A 40-MW/160-MWh lithium-ion battery facility in Fallbrook, Calif., that will be built by Fluence and will be completed by March 2021

֍ A 6.5-MW/26-MWh lithium-ion battery storage facility in Escondido, Calif., that will be built by Powin Energy and will be completed by June 2021

֍ A 3-MW/12-MWh lithium-ion battery storage facility in Poway, Calif., that will be built by Enel Green Power and will be completed by December 2021

The PUC also approved a demand response program equaling 4.5 MW. OhmConnect will provide the demand response service.

Lead image credit: San Diego Gas & Electric

https://www.renewableenergyworld.com/articles/2018/06/regulators-approved-five-gridscale-lithiumion-battery-projects-for-southern-california.html
Posted by: AGelbert
« on: June 08, 2018, 08:19:32 pm »



Unpacking the Energy Storage Opportunity in America

June 6, 2018

By Philip Mihlmester and Ken Collison

energy storage
         
Storage is rightfully one of the hottest topics in the energy industry right now. The potential benefits and profitability has prompted plenty of excitement — and questions — among industry leaders. And for good reason. Widespread deployment of energy storage, especially batteries, will increase substantially in the next few years. In fact, analysts project an annual market of 2,600 MW by 2022 — that’s nearly 12 times the size of the 2016 market.

There are three underlying trends driving this growth:

֍ Favorable federal and state regulations on energy storage;

֍ Falling costs for batteries due to advances in technologies;

֍ A developing ability by energy storage owners to tap into multiple revenue streams.

Storage is in a league of its own despite being a core element of distributed energy resources (DER) increasingly connecting to traditional grids with new sources of energy. In practice, storage improves grid reliability and resiliency while potentially delivering environmental benefits that surpass that of traditional grids. It’s hybrid in the sense that energy storage shares some features in common with generating facilities and other features in common with transmission assets and load. Theoretically, this means it should be able to provide a broader range of services than other energy assets. However, as with any novel technology, the array of opportunities for storage brings new types of risks that project developers and investors need to understand so they can plan for contingencies and mitigation approaches.

Knowing Where to Start

According to energy sector analysis ICF conducted in partnership with law firm Norton Rose Fulbright, a key challenge storage faces in trying to participate in wholesale energy markets today is that the rules were developed for power plants and demand response companies — which may unnecessarily limit the scope (and therefore compensation) of storage services. However, the Federal Energy Regulatory Commission (FERC) is currently working to clear a path to wholesale market participation for storage providers. In fact, the FERC has issued four orders in recent years that help energy storage. In November 2016, FERC issued a notice of proposed rulemaking (NOPR) introducing transparent market rules for energy storage facilities to participate in organized markets run by regional transmission organizations (RTO) and independent system operators (ISO). In February 2018, FERC issued its final rule (Order 841) requiring ISO and RTO markets to establish market rules that properly recognize the physical, operational and capacity characteristics of electric storage resources.

FERC’s recent moves aim squarely at removing market barriers to participation and laying the regulatory groundwork for offering strong incentives tied to storage resource development. However, a mountain of work still remains to be done to realize the full potential of energy storage throughout the country. Here’s where America’s key energy stakeholders should begin.

Take steps to resolve uncertainty.

Heed industry advice and don’t be afraid to ask for interpretive guidance or a declaratory order from FERC stating how the commission will apply its regulations to a certain set of facts. These options typically require both time and filing fees, but they could help settle important questions. Further, some state regulators also offer a procedural option of requesting declaratory relief or an advisory opinion on regulatory matters. For example, Tesla obtained an advisory ruling from the Massachusetts Department of Public Utilities in September 2017 that said certain small-scale batteries paired with solar generating facilities are eligible for net metering. The ruling was issued less than four months after Tesla filed a petition that prompted Massachusetts to open a general docket on eligibility of energy storage for net metering.

Draft storage contracts to address potential changes in the regulatory regime.

A key takeaway from our analysis with Norton Rose Fulbright: this could mean including a mechanism to revisit pricing in the event of a change in law. Alternatively, the parties could be required to enter into good-faith negotiations to restore the benefit of each party’s bargain after a change in law.

Combine energy storage with other generating assets.

For example, many rooftop solar companies are deploying storage alongside solar installations. Combining storage with generating assets with stable revenue and well-defined market participation rules helps mitigate the risk that changes in market rules may reduce or eliminate revenues from a specific storage service.

It is also important for storage stakeholders to understand that an investment tax credit (ITC) can be claimed on the cost of a storage facility — with regulators taking stock of how the mix of electricity stored changes over the first five years when the credit is exposed to full or partial recapture. In fact, the IRS requires no more than 25 percent of the energy stored to come from other sources than the solar or wind facility tied to the energy storage asset, and then the percentage of other energy storage determines the amount of investment tax credit that can be claimed. For example, if 10 percent of the storage energy is from other sources the first year, then only 90 percent of the full ITC can be claimed. If the percentage of other energy stored increases in any of the next four years, the credit is subject to partial recapture.

The best way for owners to mitigate this type of risk is thorough and accurate modeling of system operation under the full range of operating conditions, and with the system providing all anticipated energy services. To the extent the offtaker has a right to control charging, the asset owner may want to build in a right to recover any ITC-related recapture or losses. A complete picture is needed for owners, utilities and regulators to estimate the fraction of charging energy supplied by a linked, or nearby, solar or wind project — depending on each case.

Understanding Performance Risks — and Preparing for Their Possibility

New technology carries obvious performance risks. As our report points out, poor performance jeopardizes contracts and could subject developers to heavy non-performance penalties in certain wholesale markets. That remains true in the energy storage world.

In practice, manufacturer warranties and other performance guarantees and even insurance policies can help. They currently exist for rooftop solar, for example. They need to be developed for storage as well. Developers should make sure that adding storage to other forms of generation will not invalidate any performance guarantees attached to the generating facility.

Developers usually buy batteries directly from the manufacturer and focus primarily on system integration. If the developer does not have a comprehensive understanding of battery capabilities and limitations, such as maximum charge and discharge rates, thermal requirements and cycle life, there is a strong possibility that the control room will mismanage the battery, and the overall system will be unable to satisfy power purchase agreement performance expectations, with the potential for adverse financial impacts or litigation. Ultimately, performance risk should be considered both in terms of initial system performance risk and long-term performance risk.

It’s crucial for energy storage owners to come up with an appropriate O&M plan based on a thorough understanding of how the battery will work. In addition to periodic battery replacement, that plan includes having spare power conditioning equipment (inverters, voltage converters) and service technicians available to address unplanned outages or degraded capabilities. Most energy storage systems have continuous monitoring, and, to an increasing degree, developers are providing this service in-house. This enables faster detection and resolution of system performance. Independent engineers evaluating system design usually also evaluate the O&M plan.

Getting Utilities Up to Speed

Relatively few utilities have significant experience with energy storage. Consequently, developers proposing novel storage projects to utilities should expect that the interconnection process will take time. In addition, if a proposed project provides any service that may require on-peak charging, the utility might need costly network upgrades that would otherwise not be necessary. As more utilities gain experience with storage, the duration of the interconnection agreement process will decline.

Until then, developers can minimize delays by:

֍ Ensuring that their interconnection applications are clear and complete;

֍ Responding rapidly to utility information requests;

֍ Maintaining frequent communication with utility personnel.

The cost of interconnection network upgrades may be reduced by avoiding services that will require on-peak charging, but the value of such services may exceed the incremental cost of the network upgrades. To get in front of this, developers can help identify the least expensive interconnection location by asking the utility to do an interconnection feasibility assessment early in the process. In general, it’s advisable for all stakeholders to get ahead of procedural, logistical and connectivity issues tied to storage.

Embracing an Energy Storage Future

The lack of clarity about regulatory treatment at the federal level is the biggest challenge ahead for government, utility and industry players exploring energy storage futures. The importance for all parties involved to understand regulatory implications of incorporating energy storage into the mix is increasingly vital as retail sales-generating projects that combine energy storage with renewable power generation enter the market.

Further, stakeholders will need to navigate around existing U.S. law that does not explicitly clarify whether energy storage units qualify for regulatory exemptions typically claimed by small-scale renewable energy generators, or how adding storage to a small power plant affects the generator’s own regulatory exemptions. Storage owners will need to understand where regulatory and utility boundaries are — and how operations fit into them.

https://www.renewableenergyworld.com/articles/2018/06/unpacking-the-energy-storage-opportunity-in-america.html
Posted by: AGelbert
« on: May 04, 2018, 01:49:55 pm »

CleanTechnica
Support CleanTechnica’s work via donations on Patreon or PayPal!

Or just go buy a cool t-shirt, cup, baby outfit, bag, or hoodie.

Tesla Plans To Triple Energy Storage Business This Year

May 3rd, 2018 by Steve Hanley

SNIPPET:

Quote
As we remind people frequently, Tesla is not a car company that also makes batteries, it is a battery company that also makes cars. (Note Google’s description in the screenshot below.) The cars get all the media attention, but the energy storage component may ultimately be more important to its stated mission of breaking the world of its fossil fuel addiction. 


Full article with eye opening grid battery response graphics:


https://cleantechnica.com/2018/05/03/tesla-plans-to-triple-energy-storage-business-this-year/

Posted by: AGelbert
« on: April 02, 2018, 06:55:19 pm »

Is Sion Power’s Licerion Lithium Battery What The Electric Aviation World Has Been Waiting For?

April 2nd, 2018 by Nicolas Zart

It sounds as if the electric aviation news industry has somewhat tapered down, giving a chance for other competing electric mobility industries to make it into the limelight. But that doesn’t mean that the electric aviation industry is sitting idly either. In fact, Sion Power just announced a “breakthrough” in its Licerion lithium battery chemistry.

Licerion Lithium Battery Takes A Shot At Electric Aviation
Sion Power Licerion rechargeable lithiumSion Power made quite a stir when it announced it was ready for the production of its patented Licerion rechargeable lithium metal battery by late 2018 in its Tucson, Arizona facility. As to what a Licerion rechargeable lithium battery is, that’s a good question. Sion Power claims that it is 60% lighter than conventional Li-ion batteries, which could seriously boost the potential of electric aviation and the company’s unmanned aerial vehicle (UAV) products. It supposedly offers a mouthwatering 500 Wh/kg, 1,000 Wh/L, and 450 cycle battery. And the best part is that if these numbers are good enough for the electric aviation industry, they surely are even better for road-bound electric vehicle (EV) markets.


Still, we need more details. This isn’t an April 1 joke, but it’s also unclear how good the offer is and what might be missing. Individually, the Licerion cells measure 10 cm x 10 cm x 1 cm (roughly 4″ x 4″ by .3″) and offer 20 Ah for the highest energy density combination currently available. At the core, a metallic lithium thin-film anode was designed with a host of physical and chemical levels of protection to enhance the safety and the lifespan of its lithium batteries. By combining these anodes with traditional lithium-ion intercalation cathodes, the company hopes to not only reach these high-energy-density numbers but to have them manufactured by year-end.

Sion Power Licerion rechargeable lithium

Tracy Kelley, Chief Executive Officer of Sion Power, recently stated, “Over the last decade Sion Power, and our research partner BASF, have strategically focused on meticulous research and development of a next-generation lithium battery. … The result of our team’s efforts will be seen in a safe lithium metal battery that is in a class by itself. We are on track to deliver product to a select group of partners by the end of 2018.”


The Never-Ending Quest For High-Energy-Density Batteries 👨‍🔬

Over the past decade, we’ve seen a few prospective battery chemistries vie for the lucrative newly budding EV market — from lithium-air, to sulfur, to mysterious solid-state batteries. Although each has their pros and cons, the results have always been decidedly better than what the current generation of batteries could offer. Once ironing out the last technological hurdles, mass manufacturing needs to be solved and eventually begin. This is where the wheat is separated from the chaff.

With various new batteries demonstrating what seems to be excellent performance for EVs, once thing is becoming more and more clear — there isn’t a silver-bullet approach that is a perfect solution for EVs, not even a silver buckshot. On the contrary, there are and will continue to be many good approaches.

If it is to work out as dreamed and pitched, though, the Sion Power Licerion battery could be one of the first to bring commercial electric flight to the mass market. Maybe. Perhaps. We’ll see.


https://cleantechnica.com/2018/04/02/is-sion-powers-licerion-lithium-battery-what-the-electric-aviation-world-has-been-waiting-for/
Posted by: AGelbert
« on: March 15, 2018, 04:56:13 pm »

Like almost everything in RE :" It depends"
If they are cycling its bank say to a 10 percent depth and using it as some kind of peaker plant to replace building a NG facility or back up wind or account for brownout which is what the press releases say then they could easily see 10000 cycles or more. If the local grid is in more trouble and they regularly have to dip down to 70 percent or more then yes the 5000 cycles could happen. I'm no lithium expert and Tesla is extremely guarded about releasing real engineering data versus press releases. Also Lithium ages weirdly. Just because it does not meet its initial specs does not mean it's toast. You could reconfigure it for a less demanding application and/or cycle in new components. In that way its no different then rebuilding a generator in a multi generator grid. One of its challenges is you need to control its temperature, cell by cell voltage etc or else when it goes wrong it really really goes wrong. That adds a lot of complexity and fail points. All that is justified in cars, for stationary... We will see how it rolls out and ages.


Thank you for your well reasoned and informative answer. I will continue monitoring the situation in Australia. I believe the Australians made a sound decision in buying this massive battery system from Musk. Furthermore, I continue to believe the use of the adjective "unsuitable" by Palloy to describe the Australian battery bank sold to them by Musk is deliberately disingenuous disparaging of the value of a system that has already avoided brown-outs with its 4 second (or less) response time. Battery technology aside, the cost savings in electrical appliance repair and replacement due to the superior smoothing effect over fossil fuel peaker plants, that this battery bank has already demonstrated, constitutes a significant amount of money NOT spent. That is a plus for the Australian battery system that must be part of the cost/benefit analysis.

Thanks again for the information about that system I posted about in Puerto Rico. I'll pass that on to some people I know down there.

Blue Planet Energy Supplies Energy Storage & Training In Puerto Rico
 


March 14th, 2018 by Jake Richardson

The energy storage provider Blue Planet Energy recently deployed its Blue Ion energy storage systems to support the electrification efforts in Puerto Rico.



Image Credit: Blue Planet Energy

These deployments took place in areas where there has not been reliable electricity since September of 2017, when Hurricane Maria struck. One site is a volunteer housing facility in the Isabela municipality and the other is located in the Corozal municipality to provide electricity to a clean water pumping system. Blue Planet Energy is also providing support through training and education sessions.

Too many of Puerto Rico’s residents have not had a functioning electric grid since Hurricane Maria’s landfall in September. Our Blue Ion units will provide critical sites with reliable, safe and self-sustained power to ensure they can continue providing essential services to their communities. We’re proud to be able to lend our support to Puerto Rico and to contribute to its mission of rebuilding with stronger, cleaner and more reliable energy infrastructure,” said Henk Rogers, Blue Planet Energy CEO and founder.

A 16 kilowatt-hour (kWh) Blue Ion 2.0 battery unit was installed at the well pumping system in Corozal. The energy storage technology is working with a 7 kW solar power system in a remote neighborhood called Palos Blanco. This area was experiencing a lack of both clean water and reliable electricity, so the solar power and energy storage system is helping to produce both.

“Our mission on the ground in Puerto Rico is to coordinate with the EPA and FEMA to install safe drinking water stations and solar-powered pumping systems to service those that need it most, ” explained Mark Baker, Director of Disaster Response for Water Mission. This organization is working to address water safety in many rural communities in Puerto Rico.

Another 16 kWh Blue Ion system was deployed at the Las Dunas volunteer center. This facility supports aid workers who are installing solar power kits by providing them with housing and assistance. Up to 15 volunteers can be housed there, but the structure was without power until the new system was deployed.

“Partnering with Blue Planet Energy has helped to supply reliable power for our base operations, allowing us to meet our mission of deploying solar kits to areas hardest hit by Maria,” explained Walter Meyer-Rodriguez the Coastal Marine Resource Center project lead.

In fact, CMRC has plans to add over 100 more solar power + energy storage systems in under-served areas of Puerto Rico.

Blue Planet Energy also sponsored the Puerto Rico Solar Energy Industries Association’s inaugural Clean Energy Summit in San Juan in February to address how energy storage could help in the island’s recovery.

“Being on the ground in Puerto Rico and speaking with people from communities impacted by Hurricane Maria, we’ve seen firsthand the risk that centralized power systems pose and the hardship they can leave in the wake of a devastating weather event. The Blue Planet Energy team is thrilled to pass on the knowledge and tools for reliable, well-designed off-grid power so that Puerto Ricans can rebuild their communities,” stated Blue Planet Energy’s Vice President of Engineering Kyle Bolger.

The Blue Ion off-grid ferrous phosphate battery system has products at 8 kWh, 16 kWh, and a much larger option that can be scaled up to 450 kWh.

https://cleantechnica.com/2018/03/14/blue-planet-energy-supplies-energy-storage-training-puerto-rico/

Agelbert COMMENT: I applaud storage techology. This will help Puerto Ricans get off the profit over planet treadmill of fossil fuel 😈 energy price gouging for good!
It really is a great product.  We are a dealer for them. The lithium iron phosphate cell has great potential...
Posted by: AGelbert
« on: March 15, 2018, 02:45:27 pm »

Solar Batteries: Lithium Iron Phosphate vs Lead Acid

comparing lithium ion phosphate batteries to lead acid batteries

8 Reasons Lithium is Better for Solar Energy Storage
Sometimes newer isn’t better. But in the case of solar battery technology, the newer lithium iron phosphate batteries (LiFePO4, or LFP) defeat the older lead acid varieties in almost every way.

Without getting too technical, here are 8 reasons lithium squashes lead if you’re looking to buy and install a solar energy system in your home or business:

1. Safe enough for Grandma to use

LFP solar batteries will not explode or catch fire. They use very stable chemical compounds. They are stable even at high temperatures. And if you’re wondering about those exploding laptops and cell phones from a few years ago, those were lithium-cobalt batteries. Not the same thing.

In contrast, lead batteries have all sorts of stuff that can go wrong without proper maintenance, like spilled or leaking acid. Which leads to reason #2.

2. No need for a “solar-sitter” while you’re on vacation

Your dog might need help while you’re gone, but your lithium iron solar battery will be just fine on its own. It needs no ongoing maintenance like voltage monitoring or refills.

In contrast, lead acid requires a lot of monitoring and upkeep. Otherwise, lots of things can go wrong, including leakage, loss of power, and a big hole in your wallet. Some varieties need more work than others, like refilling the electrolyte solution with fresh water and checking specific gravity. But all of them require more technical skill and attention. See this article for all the specialized work you have to do with lead acid solar batteries.

If you have lithium iron batteries, you avoid all that maintenance and risk.

3. This is a marathon, not a sprint. LFP lasts way longer.

Again, specific data varies by brand and type. But a typical lithium iron phosphate battery will last for 8-10 years and for thousands of cycles. The sonnenbatterie, a lithium iron phosphate solar storage battery used by Coastal Solar uses, is guaranteed for a minimum of 10 years and 10,000 cycles.

How much worse are lead acid batteries? They usually last less than 3 years, and the best ones might make it to 1000 cycles. So while lead batteries cost less up front, they won’t last nearly as long, and you’ll pay for multiple replacements before the LFP would have run out.

What’s a cycle? Think of your phone. When the battery light flashes, that means you’ve ‘discharged’ the battery. Once you ‘recharge’ it back to full power, that’s one cycle. How long a cycle lasts depends on a lot of factors, such as how far down you discharge it each time and the local temperature.

4. Solar batteries care about their weight too.

Lithium batteries generally weigh less than half of what comparable lead acid batteries weigh. This means lower shipping costs, less stress during installation, and less strain on your walls, or wherever you end up installing it.

lithium iron phosphate solar batteries beat lead acid batteries

5. Lithium is “green,” even if you’re not.

You’ll have to discard your battery eventually. The chemicals in the LFP solar batteries are non-toxic and cause no harm to the environment. They contain no rare metals or what is commonly referred to as battery acid – which is very dangerous.

Lead batteries, on the other hand, use dangerous chemicals that are harmful – to you and to the fish. So even if you maintain it properly, disposing of a lead battery is environmentally problematic. Regardless of whether you consider yourself an ‘environmentalist,’ choosing lithium over lead is an easy way to help the planet and impress your friends.

6. Versatility, thy name is lithium iron phosphate

A stable battery is a huge advantage. It means you can orient it however is most convenient, and put it wherever you want. Lithium solar batteries like the sonnenbatterie can be installed indoors or outdoors, in any room of your house, and on the walls or on the floor.

While some lead acid batteries also offer some flexibility as far as not requiring it to sit a certain way, they do not offer the range of installation options of the LFPs.

7. Holding nothing back – full discharge ⚡

Remember the cycles? Lithium batteries can be fully discharged without risk and without loss of future capacity. That means longer cycles, and fewer of them.

Lead batteries can only be about 80% discharged, or they risk being damaged – this is another thing you have to monitor.

8. Stable in the face of boredom

Do batteries get bored when they aren’t being used? With LFP solar batteries, it doesn’t matter. Their capacity barely budges even when not in use, and they have minimal self-discharge. This is a huge advantage, because if you’re gone for a while or don’t need the battery for certain times of day, it will be at full capacity when you return.

But lead batteries do self-discharge and lose a lot more capacity even when not in continuous use. So you get less out of it when you need it.

There’s another battery issue called the “memory effect.” This problem actually doesn’t occur with either lithium iron phosphate or lead acid batteries, so in our little contest, they tie on this point. But it’s still good to know that the LFP holds its own on this issue.

What’s the memory effect? It’s when your battery seems to lose capacity over time at a faster rate than it should. Over time, all batteries wear out and don’t recharge as much, but this should happen at a slow rate. But some batteries have a peculiar habit of resetting their maximum based on how much you discharge it.

For example, some phones have this problem. If you only use half the capacity and then recharge it, the battery “remembers” a lower maximum capacity as a result. Thus, it stays charged for much less time in the future.


Lithium iron phosphate solar batteries do not suffer from the memory effect.

https://coastalsolar.com/lithium-iron-phosphate-vs-lead-acid/
All battery makers how shall we put it... talk up their qualities and remain quiet on their drawbacks. I won't get into a peeing match with you on this but lithium is not the end all beat all for stationary uses... At least not yet. Here are some challenges to consider and understand I'm a believer:

1) Lithium batteries are still too new and are not recycled to any great degree. That will change as volume increases.

2)they require a sophisticated battery management system without which they are a brick

3)you either get several thousand cycles or 80-90 percent discharge rates... not both

So partial truths from above:
1)lead acid maintenance, I add water to mine twice a year, sealed versions are just that sealed and require nothing for their entire lifespan

2)recyclability: I cannot force people to recycle their batteries but in this part of the world every scrap yard will pay you money for them. Lead is recycled commercially and the cost is built into the cost of purchase. Sulphuric acid is also recycled and it is a fairly easy manufactured chemical we have been making since the industrial revolution.

3) the memory effect usually only applies to nickel chemistries. in lead acid maybe sulphating could be considered memory but that is bad charging and takes continued neglect to occur.
Again, for discussion only not to pee in your sandbox.
Cheers,  David


Sure. I'm just saying that arbitrarily trashing Lithium, like Palloy wants to do, lacks objectivity. In welcome contrast, you weigh the pros and cons objectively. I respect you for that. 

As an expert, could you inform me as to what the actual number of cycles the 129MWh set up in Australia is limited by? Do you agree with the "5,000" CORRECTION  :-[ "8,000" cycle limitation Palloy claims they have?
Posted by: AGelbert
« on: March 15, 2018, 02:08:44 pm »

Oops, dumb question. I didn't get it the way I wanted. The battery question on strings was for my off-grid set-up at the farm. I know you need to know the power usage to figure out how big a bank, but I was just hoping for an off-the-cuff idea about what would be typical for my 4800 watts of panel I have waiting to be installed. Just a ballpark.

I probably won't battery back up the house.

Posted by: AGelbert
« on: March 15, 2018, 02:07:34 pm »

I've been following this discussion. I appreciate the input from a pro. David, please comment on Nickle-Iron as a PV storage choice.

And how big a bank do I need for my 4.8kW array with 5 hr sun? I was thinking two strings might be better than one. 48V.

I am probably going to do a grid-tie for our house in the canyon. I recently got a new roof (composition shingles). Any advice on the best racking attachment choices to avoid leaks?

The nickel Iron is a great chemistry but it shines best in charge discharge settings. For a grid connected system with battery backup its overkill. With an eye on doom it is worth considering though. at least twice the price of lead calcium which is the most common for data centres, elevators, hospitals etc all long life low usage batteries. Call me old fashion but I would probably suggest two strings of the less costly chemistry for redundancy. How much you store is always tricky. when we do net metered with battery backup we size the bank smaller say one day due to the fact the solar arrays for net metered systems are so large. In your case the scenario would be a grid connected inverter with the ability to sell back to the grid like the Radian:  https://www.youtube.com/watch?v=LeS-wGtlpLc from outback. Schneider and sunny boy have their versions. It charges up your battery first then feeds surplus to the grid. You then install a critical loads panel for what matters in your house just like for a backup generator. if power goes out you use the daytime hours to supplement you battery capacity by running everything that uses a lot of power during the day since the battery bank will be topped up within hours and the rest wasted. In your climate you might need to have smaller split air conditioners that can be run on solar you would run them full out while the sun is up and coast at night. Whole house units are real hogs on start up. The nice thing is even if you can't do grid tie you can grid zero  with the same setup which uses the grid to back up but feeds nothing back to it. That scenario is for when your utility is being difficult; utility push back to solar is real and growing. For mounts I like the flat plates with mastic and a drip cover. Usually you screw into a rafter and seal which can get messy if you miss but the flat plates allow you to go on the sheathing directly.  We use this one here: http://hespv.ca/fr-talon  but most suppliers have something similar.
Posted by: AGelbert
« on: March 15, 2018, 01:37:15 pm »

Some deliberately erroneous info on the Musk Australian battery bank, that he SOLD them (he did NOT "give" them) has been posted by (not so) closet fossil fueler Palloy. The 109 MW.h figure for the battery bank quoted by Palloy is also erroneous.

Quote
At roughly five PowerPacks per MWh of energy generation, South Australia's Tesla battery setup will comprise several hundred PowerPack towers -- each containing 16 individual battery pods that balance charge. The 129MWh of batteries to be installed at Hornsdale is roughly equivalent to the capacity installed into Tesla's new electric cars during five days of Model S and Model X production at its plant in Fremont, California.
https://www.gizmodo.com.au/2017/07/all-the-details-on-teslas-giant-australian-batteryt/

Quote
December 28, 2017 Less than a month after Tesla unveiled a new backup power system in South Australia, the world’s largest lithium-ion battery is already being put to the test. And it appears to be far exceeding expectations: In the past three weeks alone, the Hornsdale Power Reserve has smoothed out at least two major energy outages, responding even more quickly than the coal-fired backups that were supposed to provide emergency power.

Tesla’s battery last week kicked in just 0.14 seconds after one of Australia’s biggest plants, the Loy Yang facility in the neighbouring state of Victoria, suffered a sudden, unexplained drop in output, according to the International Business Times. And the week before that, another failure at Loy Yang prompted the Hornsdale battery to respond in as little as four seconds — or less, according to some estimates — beating other plants to the punch. State officials have called the response time “a record,” according to local media.
http://www.independent.co.uk/news/world/australasia/tesla-mega-battery-south-australia-outage-reaction-time-hornsdale-power-reserve-a8130986.html


I have warned Palloy several times about his penchant for taking every opportunity to attack anything that endangers the use of fossil fuels for energy.

He ignores all my warnings. I will not allow false information to be disseminated here. Consequently, I have deleted it and reposted it below with the portions of the Palloy post that are false eliminated.



Don't quote me but the 8kW version retail 14000 canadian. That is the most expensive format though the 16 kw version close to 20000 canadian.

At those prices, I'll stick to a couple of Lead-Acid Deep Cycle Marine Batts.  ::)

RE

"each have strengths and weaknesses", indeed.

... how a battery developed for EV car use can also be used for grid back-up...  Elon Musk ... South Australia MW.h ... ... batteries, ... ... batteries.

I am grateful to David B. for shedding accurate information on battery technology, including the one Musk uses,  instead of trying to use a forum to attack Musk.

Don't quote me but the 8kW version retail 14000 canadian. That is the most expensive format though the 16 kw version close to 20000 canadian.

At those prices, I'll stick to a couple of Lead-Acid Deep Cycle Marine Batts.  ::)

RE
"each have strengths and weaknesses", indeed.

It makes me wonder how a battery developed for EV car use can also be used for grid back-up, which is the opposite of a mobile situation, where Lead Iron Phosphate excels.  Elon Musk gave South Australia 109 MW.h of his batteries, as a loss-leader, knowing they would have to come back in 8,000 cycles time and buy some more unsuitable batteries.
We spitball this issue at work a lot. Lithium is great for fast instantaneous storage the kind they installed in Australia. Its also really good for peak shaving like they use it for in California. I won't claim insight into Musk's motives but building volume at a loss and keeping his companies in the news cycle to maintain share price are certainly part of it. I like lead carbon, flow batteries and even Aquion if they ever get their power density up. Lithium for mobile applications is hard to beat right now. Then you have to consider that when the cars are done with the batteries the batteries are still good for several thousand cycles at a lesser charge/discharge rate. Lots of startups in that area. 
Posted by: AGelbert
« on: March 15, 2018, 01:35:32 pm »

I've been following this discussion. I appreciate the input from a pro. David, please comment on Nickle-Iron as a PV storage choice.

And how big a bank do I need for my 4.8kW array with 5 hr sun? I was thinking two strings might be better than one. 48V.

I am probably going to do a grid-tie for our house in the canyon. I recently got a new roof (composition shingles). Any advice on the best racking attachment choices to avoid leaks?

Posted by: AGelbert
« on: March 15, 2018, 01:34:45 pm »

Well, Anchorage averages 1.5 hours of usable sun in the winter. Our problem is you get 2, 3, 4, 10 days of very little sun then 5 hours on one day. You try to size battery banks to store 2 days of usage while not destroying them. You can add extra generator time or oversizing arrays but that is the general rule. So for you: say you could make that 3kW per day we would want to store 6kW Hr while not discharging a lead acid bank more then 60-70 percent at most. For you 4 L16 6 volt 400 amp hour batteries with a 2.4 kW array. About $1600 for the battery bank good for 5-10 years depending on how you abuse it.

$1600 is more in budget, but really I don't need that much.  Beside SUN (or lack therof) we get a lot of WIND here in the valley, it comes whistling down off the mountains at least 1/2 the days where I live in the Winter.  Then in summer of course you get much more sun for much longer periods of time.  If I was really trying to go off grid and not just stay prepped for temporary outages, I think I could get away with 2kwh of storage.  I would trim my usage considerably also on days my system wasn't generating power as well.

RE
The smart human is always best for these things. Its a non linear relationship between depth of discharge and life cycle for batteries which is why we do larger banks.
Sleep time...

Posted by: AGelbert
« on: March 15, 2018, 01:33:14 pm »

Well, Anchorage averages 1.5 hours of usable sun in the winter. Our problem is you get 2, 3, 4, 10 days of very little sun then 5 hours on one day. You try to size battery banks to store 2 days of usage while not destroying them. You can add extra generator time or oversizing arrays but that is the general rule. So for you: say you could make that 3kW per day we would want to store 6kW Hr while not discharging a lead acid bank more then 60-70 percent at most. For you 4 L16 6 volt 400 amp hour batteries with a 2.4 kW array. About $1600 for the battery bank good for 5-10 years depending on how you abuse it.

$1600 is more in budget, but really I don't need that much.  Beside SUN (or lack therof) we get a lot of WIND here in the valley, it comes whistling down off the mountains at least 1/2 the days where I live in the Winter.  Then in summer of course you get much more sun for much longer periods of time.  If I was really trying to go off grid and not just stay prepped for temporary outages, I think I could get away with 2kwh of storage.  I would trim my usage considerably also on days my system wasn't generating power as well.

RE

Posted by: AGelbert
« on: March 15, 2018, 01:32:21 pm »

for the moment that is what we recommend as well. Its still in the early adopter stage. They do have advantages due to lithiums acceptance of higher current for charging and discharging. So for an off grid scenario you can massively oversize the solar array due to cheap solar panels and get it all in with a relatively small battery bank. Lead's rate of charge/discharge is more fixed so you would have to double the bank size to equal the charge rate which lowers the cost difference. There are also some problems in our area due to Lithium's poor cold charging characteristics. I like them. I will like them more in 5 years...

Bottom line here is I just don't see the need for so much storage or power generation.  You just need to keep a few diode lights on and keep your laptop charged up and a fridge running.  How much power does that really take?

RE
Individually you are right but you rely on portions of the public grid you are not factoring in. For now most people in western world off grid homes or using between 2 and 30 kW Hrs of power per day. Both of those are outliers average probably 6-12 kW Hr
All my own observations of course.


I average 140 kwh/month, for about 5/day.  However, this is far more than I really need, I could quite easily get by on half that with no change in lifestyle at all.  I could get under 1 if I made a few small changes like doing outdoor refrigeration through the winter, etc.  WTF do I need 8kwh of storage for?

RE

Posted by: AGelbert
« on: March 15, 2018, 01:02:58 pm »

for the moment that is what we recommend as well. Its still in the early adopter stage. They do have advantages due to lithiums acceptance of higher current for charging and discharging. So for an off grid scenario you can massively oversize the solar array due to cheap solar panels and get it all in with a relatively small battery bank. Lead's rate of charge/discharge is more fixed so you would have to double the bank size to equal the charge rate which lowers the cost difference. There are also some problems in our area due to Lithium's poor cold charging characteristics. I like them. I will like them more in 5 years...

Bottom line here is I just don't see the need for so much storage or power generation.  You just need to keep a few diode lights on and keep your laptop charged up and a fridge running.  How much power does that really take?

RE

Posted by: AGelbert
« on: March 15, 2018, 01:00:41 pm »

for the moment that is what we recommend as well. Its still in the early adopter stage. They do have advantages due to lithiums acceptance of higher current for charging and discharging. So for an off grid scenario you can massively oversize the solar array due to cheap solar panels and get it all in with a relatively small battery bank. Lead's rate of charge/discharge is more fixed so you would have to double the bank size to equal the charge rate which lowers the cost difference. There are also some problems in our area due to Lithium's poor cold charging characteristics. I like them. I will like them more in 5 years...
Posted by: AGelbert
« on: March 15, 2018, 12:59:42 pm »

Don't quote me but the 8kW version retail 14000 canadian. That is the most expensive format though the 16 kw version close to 20000 canadian.

At those prices, I'll stick to a couple of Lead-Acid Deep Cycle Marine Batts.  ::)

RE

Posted by: AGelbert
« on: March 15, 2018, 12:57:56 pm »

It really is a great product.  We are a dealer for them. The lithium iron phosphate cell has great potential...

How much do they cost?

RE



About 3 times the cost of a lead acid agm bank of the same capacity but should last 4 times longer. It's complicated though because each have strengths and weaknesses. It's a great product.

How much for the 8KwH version?

RE

Posted by: AGelbert
« on: March 15, 2018, 12:54:23 pm »

Blue Planet Energy Supplies Energy Storage & Training In Puerto Rico
 


March 14th, 2018 by Jake Richardson

The energy storage provider Blue Planet Energy recently deployed its Blue Ion energy storage systems to support the electrification efforts in Puerto Rico.

Image Credit: Blue Planet Energy

These deployments took place in areas where there has not been reliable electricity since September of 2017, when Hurricane Maria struck. One site is a volunteer housing facility in the Isabela municipality and the other is located in the Corozal municipality to provide electricity to a clean water pumping system. Blue Planet Energy is also providing support through training and education sessions.


Too many of Puerto Rico’s residents have not had a functioning electric grid since Hurricane Maria’s landfall in September. Our Blue Ion units will provide critical sites with reliable, safe and self-sustained power to ensure they can continue providing essential services to their communities. We’re proud to be able to lend our support to Puerto Rico and to contribute to its mission of rebuilding with stronger, cleaner and more reliable energy infrastructure,” said Henk Rogers, Blue Planet Energy CEO and founder.

A 16 kilowatt-hour (kWh) Blue Ion 2.0 battery unit was installed at the well pumping system in Corozal. The energy storage technology is working with a 7 kW solar power system in a remote neighborhood called Palos Blanco. This area was experiencing a lack of both clean water and reliable electricity, so the solar power and energy storage system is helping to produce both.

“Our mission on the ground in Puerto Rico is to coordinate with the EPA and FEMA to install safe drinking water stations and solar-powered pumping systems to service those that need it most, ” explained Mark Baker, Director of Disaster Response for Water Mission. This organization is working to address water safety in many rural communities in Puerto Rico.

Another 16 kWh Blue Ion system was deployed at the Las Dunas volunteer center. This facility supports aid workers who are installing solar power kits by providing them with housing and assistance. Up to 15 volunteers can be housed there, but the structure was without power until the new system was deployed.

“Partnering with Blue Planet Energy has helped to supply reliable power for our base operations, allowing us to meet our mission of deploying solar kits to areas hardest hit by Maria,” explained Walter Meyer-Rodriguez the Coastal Marine Resource Center project lead.

In fact, CMRC has plans to add over 100 more solar power + energy storage systems in under-served areas of Puerto Rico.

Blue Planet Energy also sponsored the Puerto Rico Solar Energy Industries Association’s inaugural Clean Energy Summit in San Juan in February to address how energy storage could help in the island’s recovery.

“Being on the ground in Puerto Rico and speaking with people from communities impacted by Hurricane Maria, we’ve seen firsthand the risk that centralized power systems pose and the hardship they can leave in the wake of a devastating weather event. The Blue Planet Energy team is thrilled to pass on the knowledge and tools for reliable, well-designed off-grid power so that Puerto Ricans can rebuild their communities,” stated Blue Planet Energy’s Vice President of Engineering Kyle Bolger.

The Blue Ion off-grid ferrous phosphate battery system has products at 8 kWh, 16 kWh, and a much larger option that can be scaled up to 450 kWh.

https://cleantechnica.com/2018/03/14/blue-planet-energy-supplies-energy-storage-training-puerto-rico/

Agelbert COMMENT: I applaud storage techology. This will help Puerto Ricans get off the profit over planet treadmill of fossil fuel 😈 energy price gouging for good!
It really is a great product.  We are a dealer for them. The lithium iron phosphate cell has great potential...

+-Recent Topics

Historical Documentaries by AGelbert
November 15, 2018, 11:49:41 pm

Corruption in Government by AGelbert
November 15, 2018, 11:29:15 pm

Apocalyptic Humor by AGelbert
November 15, 2018, 11:25:42 pm

Weird Science by AGelbert
November 15, 2018, 11:06:03 pm

Defending Wildlife by AGelbert
November 15, 2018, 10:04:24 pm

Global Warming is WITH US by AGelbert
November 15, 2018, 09:47:57 pm

Pollution by AGelbert
November 15, 2018, 02:30:05 pm

Fossil Fuels: Degraded Democracy and Profit Over Planet Pollution by AGelbert
November 15, 2018, 02:27:39 pm

Profiles in Courage by AGelbert
November 15, 2018, 01:29:06 pm

Fossil Fuel Propaganda Modus Operandi by AGelbert
November 14, 2018, 05:18:50 pm